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Abstract. Non-relativistic wavefunctions of one-dimensional rings threaded by a magnetic 
flux are characterised by a quantised vortex structure, which is visualised in the plane into 
which the ring is embedded. With increasing flux, vortex cores traverse the perimeter of 
the ring periodically at flux values where anticrossing of the energy levels occurs. The 
topology of the vortex pattern is related to measurable physical quantities. 

1. Introduction 

The phase q ( x )  of complex wavefunctions 4 ( x )  = R ( x )  exp(icp(x)), x E R",  is related 
through its gradient to wave propagation, particle motion (currents) and, for charged 
particles, to magnetic properties. In two and higher dimensions the phase gradient 
may show quantised vortices. This means that its streamlines form closed lines around 
singularities of the phase function q ( x ) .  These singularities occur at zeros of the 
modulus R ( x ) .  In n-dimensional space R" these zeros are (generically) hypersurfaces 
of dimension n - 2 .  In the plane they are points. On a path enclosing one such phase 
singularity the phase changes by 2 7  times an integer. 

Quantised vortices have been discussed by Riess (1970) where properties of the 
phase of stationary Schrodinger functions in the 3 N-dimensional configuration space 
are investigated from a general point of view and, further, where the special form of 
the Schrodinger equation is used to relate the nature of the quantised vortex structure 
to orbital currents and magnetic properties. Hirschfelder and Tang (1976) discuss 
quantum mechanical streamlines and quantised vortices in atomic and molecular 
scattering processes, and Hirschfelder ( 1977) investigates different three-dimensional 
forms of vortices (see also references quoted in these papers). Kan and Griffin (1977) 
stress applications to nuclear motion, Nye and Berry (1974) treat the motion of phase 
gradient vortices associated with solutions of the wave equation (dislocation in wave 
trains), whereas Berry et al(1980) and Berry and Robnik (1986) study two-dimensional 
systems threaded by a magnetic flux (see 0 3). 

So far phase gradient vortices have been investigated for wavefunctions which are 
manifestly spread out in two or higher dimensions. In this paper we consider a 
one-dimensional multiply connected system: a perturbed loop threaded by a magnetic 
flux. This represents the simplest case of an arbitrary perturbed network made of 
one-dimensional branches. On the other hand, such a loop is mathematically equivalent 
to a rectilinear system with periodic wavefunctions and electromagnetic potentials (see 
below). We will see that the Schrodinger functions of such one-dimensional periodic 
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structures reflect the two dimensionality of the space into which they can be embedded. 
We will show that for each state of the loop there exists a quantised vortex structure 
which can be made visible in the two-dimensional neighbourhood of the loop. This 
two-dimensional vortex structure will be constructed from the calculated values of the 
phase p of the Schrodinger function t+b = R exp(icp) on the one-dimensional branches 
of the loop. The vortex pattern gives a general flux-dependent characterisation of the 
state from which i t  has been constructed. It enables one to understand the properties 
of the one-dimensional periodic system from a new global point of view. 

It is often taken for granted that, for a particle contained in a real multiply connected 
domain G, the wavefunction must be taken periodic around each loop contained in 
G (uniqueness of the wavefunction). However, in quantum mechanics wavefunctions 
must not be single valued a priori. Therefore the imposed periodicity of the wavefunc- 
tion looks like an additional quantum mechanical postulate. But this is not the case 
in Schrodinger mechanics, since here i t  can be shown (Riess 1972) that the single- 
valuedness in Gfollows from the ellipticity of the Schrodinger operator and from the 
consistency of its definition in the multiply connected domain G with its extension to 
the two- or three-dimensional (simply connected) space, into which G is embedded 
and where the Schrodinger operator is generally uniquely defined. Therefore, in 
Schrodinger mechanics, real one-dimensional loops are mathematically equivalent to 
rectilinear periodic one-dimensional systems with periodic boundary conditions. 

Vortex structures as we will discuss here for a perturbed loop are relevant to most 
of the multiply connected systems enclosing magnetic flux. Such systems are important 
in various areas of quantum mechanics either as real systems (e.g. Aharonov-Bohm 
effects, normal and superconducting networks, cylinders, etc) or rather as mathematical 
idealisations of physical situations (e.g. periodic boundary conditions in solid state 
physics). Ring, cylinder or torus geometries are also useful in the theory of electric 
conductivity, where an electric field is described by a time-dependent magnetic flux 
(for small electric field the adiabatic approximation of the Schrodinger equation is 
important, where the flux is a parameter as in the present paper). 

2. The energy levels of the perturbed ring 

To illustrate the essence of the general behaviour we consider an electron on a 
one-dimensional ring with circumference L = LA+ LB (see the first ring shown in figure 
1). On the interval LB a constant potential V is present (representing the simplest 
form of a perturbation), whereas V is zero elsewhere. The ring is threaded by a 
magnetic flux 4. 

Mathematically a network composed of one-dimensional branches is treated branch 
by branch taking account of the correct branching conditions on the wavefunction at 
the junctions, which then uniquely determine the Hamiltonian of the network. The 
Schrodinger equation of an  arbitrary network, composed of branches with different 
constant electric potentials, is formally equivalent to the linear Ginzburg-Landau 
equation of a superconducting network composed of branches of different materials. 
The network equation for such an arbitrary superconducting proximity network has 
been derived by Riess (1983a, equation (15)). This equation can be immediately applied 
to the special case of our  ring if one makes the identifications 

@ A =  LA(2m IE ) ) " ? / h  (1) 
OB = L, [2m(  E - V ) ]  "I/ h ( 2 )  
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Figure 1. Vortex pattern associated with the lowest energy level as  a function of the flux 
6 ( V =  - 6 x  erg) .  The difference between neighbouring lines of constant phase q is 
7r/6 and  q increases in the direction of the arrows. 

where E is the energy and  m is the mass of the electron. The Schrodinger equation 
of an electron on the ring, expressed in terms of the unknown values $, and t,h2 of its 
solution at point 1 and 2 (figure l ) ,  then takes the form 

+ pCb2 = 0 

p**,  -a$? = 0. 
(3) 

Here 

(Y = (e,/ L A )  c z  6A + ( 8B/LB) cot O R  

P = (eA/LA) eXp( iYA) /Z  e A + ( o B / L B )  exp(iy,)/sin 

( 4 )  

(5) 

(6) 
sin O A ,  cot OA { sinh O A ,  coth 8, 

if E>O 
if E < O  

- A  

sin @A, cot OA = 

and Y , , ~  are the line integrals of the vector potential 

A = ( ( 2 0 ,  B )  x ( x ,  y, 0) /2  

from point 1 to point 2 on the ring interval LA,  LB respectively, multiplied by e / h c  
( - e  is the electronic charge). 

The compatibility equation for the existence of a solution of the linear system 
(3) is 

CY*-p*p=0. ( 7 )  

For each flux value 4 equation ( 7 )  has a denumerable set of energy solutions E , ( 4 ) ,  
t = 0 , 1 , 2 , .  . . . E , ( 4 )  is periodic with period 277 (4  in units of h c / e ) .  ( In  our example 
one has in addition E , ( 4 )  = Ef(-4) ,  because the potential V ( s )  has a reflection 
symmetry.) These properties can be seen from the explicit form of equation (7 ) .  Figure 
2 shows the lowest energy curves obtained by solving numerically equation ( 7 )  for the 
parameter values LA = 90 A, LB = 10 A, V = -2.4 x erg and V = -6 x erg. 
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If V is small the form of the curves E , ( @ )  are almost identical with those of an  
unperturbed ring ( V = 0), for which E,(  @ )  are parabolas, which mutually intersect at  
values @ = 7r x integer ( @  in units of hc/e).  As soon as the perturbation V is different 
from zero, the curves E , ( 4 )  no longer intersect. Instead there is anticrossing at these 
points (reflecting the Wigner-von Neumann theorem). The bigger the perturbation V 
the bigger is the energy splitting at the former crossing points @ = n7r and the larger 
is the 'anticrossing interval' A 4  around these points, where the E,(  4)  curves deviate 
appreciably from a parabolic form. 

3. Calculation of the vortex pattern 

In  order to study what happens besides the energy behaviour we have calculated the 
wavefunctions +hA(s) and +hB(s) on the intervals LA and LB as a function of the 
curvilinear space parameter s (which in both cases is measured from point 1). These 
functions are 
( c I ~ ( s )  = exp(-ie4s/hcL)[P i%(8A-s6A/LA) 

+ a exp(ie4LA/ h c ~ )  i%( st),/ L A ) ] / z  e A  

+ a exp( - ie4LB/ hcL) sin( seB/ LB)]/sin eB. 

(8) 

(9) 

(LB(s) = exp(ie&/hcL)[P sin(O,-sB,/L,) 

Equations (8) and (9) follow from (3) and the analogue to equation (14) of Riess 
(1983). Here eA, O B ,  a, P are functions of E , ( 4 )  as determined from ( 7 ) .  
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For each energy curve E , ( $ )  we have calculated the phase 9 of the wavefunction 
(8) and (9) as a function of the position on the ring and of the flux 4 ( $ ( s ) =  
R ( s )  exp(cp(s))). We have connected values of equal phase on the perimeter of the 
ring (where this situation occurs) and, quite generally, constructed lines of constant 
phase in the surrounding of the ring, which are continuous extensions of the phase 
on the ring into its two-dimensional neighbourhood of the x, y plane. This leads to a 
structure which contains quantised vortices of the phase gradient field. Each individual 
vortex is characterised by a non-zero phase winding number m defined as 

m = (1/27r) grad q ( x ,  y )  dr. (10) k 
Here C is a closed loop which encircles the particular vortex core once (i.e. the point 
where lines of constant phase converge from different directions) but no other vortex 
core. The numbers m are integers as a consequence of the single-valuedness of the 
wavefunction (see above). At a vortex core the modulus R of the wavefunction vanishes. 
(These two properties are true for any function I/I = R exp(i(o), which is sufficiently 
regular in two (or more) dimensions. For Schrodinger-type functions the regularity is 
a consequence of the ellipticity of the Schrodinger equation (see the discussion by 
Riess (1970, 1972) and references quoted therein). 

In figures 1, 3 and 4 some characteristic situations are shown. Figure 1 shows the 
evolution of the ground state. At zero flux no vortex is present, i.e. the phase cp is 

-2  n - 0 1 4  

- + 0.1 4 

n 

-2n 

re' 
- 0.14 

& nt0.14 

-211.0.14 

9 
0 

2n-0.14 

-n-0 .14  

& 
/e' 

0.1 4 

2n 

-n 

6 
@ 

n-0.14 

2n +0.14 
Figure 3. Vortex pattern of the first excited state ( V = -6 x lo-" erg). The difference 
between neighbouring lines of constant phase p is n / 6  and p increases in the direction 
of the arrows. 
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Figure 4. Evolution of the vortex structure of the second excited state ( V = -6 x erg).  
The difference between neighbouring lines of constant phase cp is n/6 and  cp increases in 
the direction of the arrows. 

constant everywhere (the wavefunction is real). When 4 increases a vortex with 
winding number -1 approaches the ring from the side opposite to the potential well 
and, for flux equal to r, penetrates into the interior of the ring at the point s = ; L A .  
If 4 is further increased a second vortex of winding number -2  approaches from 
below, whereas the inner vortex moves ‘downwards’ towards the perimeter. At d = 3 7 ~  
both vortices cross the perimeter at s =$LA,  i.e. here the two vortex cores are united. 
For 3n < 4 < 4 n  the ( m  = - 2 )  vortex is now inside and moves towards the centre of 
the ring, whereas the ( m  = -1) vortex is outside and moves away from the ring. The 
phase winding number along the perimeter is now equal to -2 .  If 4 is further increased 
additional periodic exchanges of vortices occur at 4 = r p ,  p odd integer. Each time 
a vortex with winding number -$( p + 1) enters and one with winding number -[;( p + 
1) - 13 leaves the ring at s =;LA.  Simultaneously the wavefunction vanishes at this 
spatial point. (This illustrates the fact that R is periodic with 4 but cp is not.) 

For excited states the vortex pattern is more complex. Figure 3 shows the evolution 
for the first excited state. Here, at zero flux, one vortex core ( m  = -1) enters and one 
( m  = 1 )  leaves the ring at different points of the perimeter. This means that the two 
nodes of the wavefunction at zero flux (which is real) are phase vortex centres and 
the lines of constant phase associated with this real function have to be drawn as in 
figure 3 in order to be consistent with those at  4 values different from zero into which 
they continuously develop. Here as well as for all excited states the crossing of vortex 
cores through the circumference occurs at  all flux values equal to n times an  integer. 
These are the flux values where the unperturbed ( V = 0) energy curves intersect (figure 
2 ) .  

For the second excited state (figure 4) at 4 = 0 two vortex cores with opposite equal 
winding number ( m  = 1 and  m = -1) are present on the circumference. If the flux 
increases the lower vortex ( m  = -1) leaves the ring whereas the upper vortex ( m  = 1) 
completely enters and gradually moves through the centre towards the point s =:LA.  
Simultaneously two new ( m  = -1) vortices approach from above. At 4 = n all three 
vortex cores are on the perimeter. 

There are two different sets of vortex crossing points on the circumference: those 
for flux equal to 7~ times an  even integer and  those for flux equal to 7~ times an  odd 
interger. In the vortex pattern for the first excited state there are always two distinct 
vortex cores on the circumference for 4 = n v ,  n even, and one vortex core ‘at the top’ 
of the ring for 4 = p r ,  p odd ( R  is periodic as a function of 4 with period 2 7 ~ ) .  

The number of vortex crossing points is related to the orthogonality of the states 
i ,b,(s). At 4 equal to 7~ times an even integer the points, where the vortex cores cross 
the circumference, are equal to the nodes of the functions J / , ( s )  at zero flux (at 4 = 0 
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the $,(s) are real since the Hamiltonian is real in our gauge and  since there is no 
degeneracy). This means: no node for the ground state (and hence no vortex core on 
the ring perimeter), two nodes for the first excited state (and hence two vortex cores 
on the ring), two different nodes for the second excited state (and hence two vortex 
cores at these two different nodal points), two different sets of four nodes for the third 
and fourth excited state respectively, and so on. Half of these vortex cores enter and 
half of them leave the ring when 4 becomes different from zero. Figure 4 illustrates 
this behaviour for the second excited state. 

Further, at 4 equal to n times an odd integer the sum of the number of nodes of 
each of the two wavefunctions having developed from a pair of split energies at 4 = 0 
(or at nn, n even) is equal to twice the number of nodes of either one of the two 
functions at 4 = 0 (or at n n ,  n integer). For instance, the first and second excited state 
each have two nodes at zero flux. At cb = n the first excited state has one node (i.e. 
one vortex core on the ring) but the second excited state has three nodes (vortex cores 
on the ring), i.e. the total number of nodes (vortex cores) of the two states is always 
four for 4 equal to n times an integer. 

On points off the perimeter line the local form of the lines of constant phase is 
arbitrary. However, their relevant topological structure, i.e. the number of vortex cores 
with their individual winding numbers and their positions (inside, outside or on the 
perimeter) are determined by our extrapolation prescription. Figures 1 ,  3 and 4 were 
drawn in such a way that a continuous transition between different vortex patterns at 
different flux values is obtained, that the pattern is consistent with the calculated phase 
values on the ring perimeter and that there is spatial continuity in two dimensions 
(except of course at the vortex centres, where p jumps). For all flux values 4 of each 
of the intervals nn < 4 < ( n  +$)T  and ( n  - + ) T  < 4 < n?r we kept the same topological 
structure, which was obtained for 4 values close to 4 = nx,  n integer. Here the vortex 
cores were found to be isolated points with well defined winding numbers. When 4 
tends to n r ,  the vortex cores join the perimeter cor.tinuously. Therefore for 4 = nx, 
all lines of constant phase were drawn converging to these cores on the perimeter 
(although here the lines outside the perimeter could also be drawn as closing together 
on a single line (a degenerate vortex core) connecting the perimeter with infinity). 

A true gauge transformation (i.e. where f is single valued in the entire plane) 

A' = A + grad f (x, y )  

does not change the topology of the pattern, since the additional phase factor of the 
transformed wavefunction does not change the phase winding number and the position 
of the vortex cores. 

Quantised vortex structures of truly two-dimensional systems threaded by a mag- 
netic flux have been investigated in two interesting papers: Berry et a1 (1980) studied 
the Aharonov-Bohm effect from this point of view, whereas Berry and Robnik (1986) 
considered a charged particle in an asymmetric two-dimensional domain D threaded 
by a single line of magnetic flux. It was found that the phase winding number W 
around the area containing the magnetic flux increases by unity each time the flux 4 
increases by 2 7 ~ .  Our calculations confirm and further illustrate this general result. 
(For our one-dimensional perturbed ring this relation can, for example, be derived 
from the general 4 dependence of the vortex patterns.) 

In the quoted references the jump of W occurs at 4 values equal to T times an 
odd integer and is caused by a single vortex with winding number one, which has 
migrated from the edge of D into the flux containing domain. This is exactly analogous 
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to what happens in the ground state of our  ring system (figure 1). In the examples 
calculated by Berry and Robnik (1986) the rest of the quantised vortices present in D 
are not involved in the change of W. This point is different in our one-dimensional 
loop: here, for excited states, several vortex cores are simultaneously involved in the 
change of W, leading to jumps of W by more than unity. Further, the jumps of W 
occur also at  4 equal to rr times an  even integer. 

4. Discussion 

In  the flux intervals between adjacent energy anticrossing zones around the flux values 
nrr, n integer, the wavefunctions +,(s) resemble very much the unperturbed ( V = 0) 
functions 

( L k ( s )  -exp(-ik2rrs/L.) (11) 

which give rise to the (intersecting) parabolic energy curves of figure 2. The smaller 
the perturbation V the bigger the resemblance in these flux intervals. In terms of 
vortex structure this means that the flux interval A 4 ,  over which most of the central 
zone of the vortices crosses the ring (i.e. is situated in the immediate vicinity of the 
perimeter) is small if V is small (and vice versa). In our examples this crossing zone 
A +  is of the order of 0.3 rad for V = -6 x erg and of the order of 0.03 rad for 
V = -2.4 x erg. 

In these anticrossing intervals A 4  around 4 = nrr, n integer, the wavefunctions are 
very different from the plane waves (11). At 4 = nrr the phases are discontinuous 
along the ring across the nodal points, where jumps of multiples of rr occur. (However 
+( s)  itself remains continuous.) 

In the limit, where V tends to zero, the phase functions cp( s )  change discontinuously 
with 4, i.e. in this limit the k values jump by integers at C#J = nrr, which can be read 
off figure 2 .  For the ground state, for example, the k values decrease by one each time 
4 increases by 2rr starting at C$ = rr (see figure 2). This means that in the limit of 
vanishing perturbation the physically significant wavefunctions are not the 4-indepen- 
dent plane waves (1 11, but are &dependent functions associated with the anticrossing 
of the energy levels in the limit V = 0. 

Superconducting micronetworks in the vicinity of the transition temperature can 
be described by the linear Ginzburg-Landau equation, which is of Schrodinger type. 
Hence the vortex pattern must show the same characteristics as for electronic loops 
of similar geometry. However, in superconducting networks only the ground-state 
solution is of physical significance (corresponding to the highest possible transition 
temperature, see, e.g., Riess (1983a) and references quoted therein). We have calculated 
the phase vortex pattern for a loop with an  arm (the arm is the equivalent to the 
perturbation V in the ring discussed above). Here vortices enter and leave the loop 
periodically at the point opposite to the arm (in the same way as for the ground state 
of the electron on the ring shown in figure 1 ). Physically this means that at this spatial 
point the superconducting network becomes normal periodically with 4. 

The current around the ring is given by 

j -  R ’ ( s ) [ ( h c l q ) ( a l d s ) c p ( s ) + A i ( s ) I  

( q  = e for electrons, q = 2e for a superconductor, Al l  is the tangential component of 
the vector potential). Since div j = 0, the current j is the same on each point of the 
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loop. It follows that, where R is small, acp/as is large and vice versa. Hence in 
superconducting loops (or in the ground state of electronic loops) the vortex cores 
cross the perimeter at the weakest point of the loop (i.e. where V ( s )  is highest and  
hence R is small for all 4). A high potential barrier (‘weak link’) represents a large 
perturbation of the ring. Hence the flux interval A 4  during which a vortex core is 
pinned to the neighbourhood of its crossing point (which is situated in the barrier) is 
large, as we have seen. If the height of the barrier tends to infinity the crossing intervals 
tend to their maximum value 27r ( 4  in units of h c l 9 ) .  This can be shown to lead 
directly to Josephson effect behaviour. 

The systems discussed so far have been aperiodically perturbed rings. They show 
anticrossing of the energy curves at all values 4 = n r ,  n integer, where the unperturbed 
energy parabolas intersect (figure 2 ) .  All the possible characteristic scenarios of vortex 
crossing through a ring can be seen from an aperiodically perturbed ring, because here 
all the energy levels anticross. If the perturbation is periodic along the ring circumfer- 
ence (i.e. with period L / p ,  p >  1, integer) only the levels at the band edges anticross 
and hence give rise to vortices crossing the perimeter. For these levels the change of 
the vortex pattern takes place according to the same scenario as for the corresponding 
levels of the aperiodically perturbed loop. 

As an example we have calculated the vortex pattern of a superconducting ring 
with two equal arms at opposite points of the ring. (This is the analogue to an  electron 
on a ring with two equal potential wells situated at opposite intervals of the ring.) 
Here the eigenvalues as a function of 4 cross at 4 = nn, n odd, and  anticross at 4 = r r ,  
r even. At 4 = 0 the first excited state shows two nodes at opposite points symmetrically 
between the arms. At these nodes one vortex core enters and one leaves the ring similar 
to the scenario of figure 3. At 4 = 257 two ( m  = -1) cores enter simultaneously at the 
same nodes similar to figure 3. (We remark again that for superconductors only the 
lowest branch of the eigenvalues has a physical meaning and that 4 is taken in units 
of h c / 2 e . )  Preliminary results on quantised vortex motion through superconducting 
rings have been reported earlier (Riess 1983b). 

The local value of the phase gradient does not have a direct physical meaning, 
since it depends on the gauge of the vector potential. On the other hand, the global 
behaviour of the phase in space, i.e. the topology of the vortex pattern (which is gauge 
invariant), is directly related to measurable physical quantities. In  this context we 
quote two general theorems (Riess 1970) which are valid for any spin-free system 
which can be enclosed in a simply connected domain with no current flowing through 
its boundary: ( a )  if no vortex core of the phase gradient is present in this domain, the 
system is diamagnetic and ( b )  if the system is paramagnetic, there must be at least 
one vortex core in this domain. 

These theorems can be illustrated by the ring systems discussed in the present 
paper. Consider the ground state for -57 < 4 < 57. Here there are no vortex cores in 
the simply connected domain of the system, i.e. inside the perimeter of the ring, as we 
have seen. Hence it is diamagnetic according to theorem ( a ) .  This is in fact the case 
since a E ( 4 ) / a l 4  I > 0. Further, when 57 < 4 < 2 r ,  we have aE/a4  <O, i.e. paramagne- 
tism (which can be measured experimentally). Hence, according to theorem ( b ) ,  there 
must be a phase gradient vortex core inside the perimeter of the ring. This mathematical 
property of the wavefunction can thus be predicted from an experimental property of 
the system. Our explicit calculation (figure 1)  confirms this prediction. 

Further, quite generally, for any state of the loop system one sees that, whenever 
there is a change of the phase winding number around the loop (i.e. whenever vortex 



5188 J Riess 

cores cross the perimeter) there is a change between diamagnetic and paramagnetic 
behaviour. This again shows that the topology of the vortex structure is directly related 
to measurable properties of the system. 

In this paper the nature of phase vortex patterns associated with one-dimensional 
periodic structures and their change with magnetic field has been illustrated by consider- 
ing a perturbed loop. The important feature is the crossing of quantised vortices 
through the loop at flux values where the energy levels anticross. (This gives a fluid 
dynamic description of level anticrossing.) The role of phase vorticity of more complex 
periodic systems will be discussed in further papers. 
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